论文标题

在一个真实球形空间的小韦尔群上

On the little Weyl group of a real spherical space

论文作者

Kuit, Job J., Sayag, Eitan

论文摘要

在本文中,我们进一步研究了真实球形均匀空间的压缩锥$ z = g/h $。特别是,我们提供了Knop andKrötz最近推出的$ Z $的小韦尔组的几何结构。我们的技术基于对沿$ \ mathrm {lie lie}(g)$的grassmannian的一个参数亚组的subergebra $ \ mathrm {lie}(h)$的偶联的限制的精细分析。小Weyl组作为由压缩锥壁中的反射产生的有限反射组获得。

In the present paper we further the study of the compression cone of a real spherical homogeneous space $Z=G/H$. In particular we provide a geometric construction of the little Weyl group of $Z$ introduced recently by Knop and Krötz. Our technique is based on a fine analysis of limits of conjugates of the subalgebra $\mathrm{Lie}(H)$ along one-parameter subgroups in the Grassmannian of subspaces of $\mathrm{Lie}(G)$. The little Weyl group is obtained as a finite reflection group generated by the reflections in the walls of the compression cone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源