论文标题
年轻磁盘的尘埃质量:限制行星形成的初始固体储层
Dust masses of young disks: constraining the initial solid reservoir for planet formation
论文作者
论文摘要
近年来,有证据表明,行星形成早就开始了,在第一个$ \ sim $ 0.5 Myr中。研究年轻磁盘中可用的尘埃质量使人们可以了解行星系统的起源,因为成熟的磁盘缺乏重现观察到的超球门系统(尤其是大型巨大系统)所需的固体材料。我们旨在确定恒星形成嵌入式阶段的磁盘是否包含足够的灰尘,以解释最大的系外行星的固体含量。我们使用ATACAMA大毫米/亚毫米阵列(ALMA)条带6对Perseus恒星形成区域中嵌入式磁盘的观测结果以及非常大的阵列(VLA)Ka-band(9 mm)数据,以提供来自通量密度的粉尘盘质量的可靠估计。使用包括大谷物在内的diana不透明模型,其灰尘值为$κ_ {\ rm 9 \ mm} $ = 0.28 cm $^{2} $ g $^{ - g $^{ - 1} $,perseus的嵌入式圆盘的中间粉尘质量为158 m $ _ $ _ \ oplus $ us $ _ \ oplus $ 0和52 m. VLA磁通。 Alma通量中位数的下部限制为47 m $ _ \ oplus $和12 m $ _ \ oplus $,分别使用0类和I类的I级,使用最大的灰尘不透明度值$κ_ {\ rm 1.3mm} $ = 2.3 cm $ $^{2} $^{2} $ g $ g $ g $ g $ g $ g $^{-1} $。与狼疮和其他区域的II类磁盘推断出的尘埃质量相比,年轻的0类和我磁盘的尘埃质量至少为10和3。从VLA数据中得出的珀斯语中的0类和I磁盘的尘埃质量足够高,可以产生观察到的系外行星系统,并以行星形成模型可以接受的效率可接受:如果观察到的巨型系外行星中的固体含量在0阶段的效率效率为$ \ sim $ \ sim $ 15%。如果将行星形成设置为在I类磁盘上开始,则需要$ \ sim $ 30%$ \ sim $ 30%。
In recent years evidence has been building that planet formation starts early, in the first $\sim$ 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka-band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities. Using the DIANA opacity model including large grains, with a dust opacity value of $κ_{\rm 9\ mm}$ = 0.28 cm$^{2}$ g$^{-1}$, the median dust masses of the embedded disks in Perseus are 158 M$_\oplus$ for Class 0 and 52 M$_\oplus$ for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M$_\oplus$ and 12 M$_\oplus$ for Class 0 and Class I, respectively, obtained using the maximum dust opacity value $κ_{\rm 1.3mm}$ = 2.3 cm$^{2}$ g$^{-1}$. The dust masses of young Class 0 and I disks are larger by at least a factor of 10 and 3, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of $\sim$ 15%. Higher efficiency of $\sim$ 30% is necessary if the planet formation is set to start in Class I disks.