论文标题
使用深序回归网络对单个航空图像的高度估计
Height estimation from single aerial images using a deep ordinal regression network
论文作者
论文摘要
几十年来,了解地球表面的3D几何结构一直是摄影测量和遥感社区的一个积极研究主题,它是各种应用的重要组成部分,例如3D数字城市建模,变更检测和城市管理。先前的研究已广泛研究了基于立体声或多视图图像匹配的空中图像的高度估计问题。这些方法从不同角度需要两个或多个图像,以通过提供的相机信息重建3D坐标。在本文中,我们处理了来自单个空中图像的高度估计的模棱两可和尚未解决的问题。在深度学习(尤其是深度卷积神经网络(CNN))的巨大成功的驱动下,一些研究提出了通过训练具有大规模注释数据集的深CNN模型来估算单个空中图像的高度信息。这些方法将高度估计视为回归问题,并直接使用编码器 - 编码器网络来回归高度值。在本文中,我们提议使用网络训练的序数损失,将高度值分为间隔的间隔间隔,并将回归问题转化为序数回归问题。为了启用多尺度特征提取,我们进一步结合了一个非常空间金字塔池(ASPP)模块,以从多个扩张的卷积层中提取特征。之后,后处理技术旨在将每个贴片的预测高度图转换为无缝高度图。最后,我们对ISPRS Vaihingen和Potsdam数据集进行了广泛的实验。实验结果表明,与最先进的方法相比,我们的方法的性能明显更好。
Understanding the 3D geometric structure of the Earth's surface has been an active research topic in photogrammetry and remote sensing community for decades, serving as an essential building block for various applications such as 3D digital city modeling, change detection, and city management. Previous researches have extensively studied the problem of height estimation from aerial images based on stereo or multi-view image matching. These methods require two or more images from different perspectives to reconstruct 3D coordinates with camera information provided. In this paper, we deal with the ambiguous and unsolved problem of height estimation from a single aerial image. Driven by the great success of deep learning, especially deep convolution neural networks (CNNs), some researches have proposed to estimate height information from a single aerial image by training a deep CNN model with large-scale annotated datasets. These methods treat height estimation as a regression problem and directly use an encoder-decoder network to regress the height values. In this paper, we proposed to divide height values into spacing-increasing intervals and transform the regression problem into an ordinal regression problem, using an ordinal loss for network training. To enable multi-scale feature extraction, we further incorporate an Atrous Spatial Pyramid Pooling (ASPP) module to extract features from multiple dilated convolution layers. After that, a post-processing technique is designed to transform the predicted height map of each patch into a seamless height map. Finally, we conduct extensive experiments on ISPRS Vaihingen and Potsdam datasets. Experimental results demonstrate significantly better performance of our method compared to the state-of-the-art methods.