论文标题

材料描述符,以发现有效的热电学

Material Descriptors for the Discovery of Efficient Thermoelectrics

论文作者

Graziosi, Patrizio, Kumarasinghe, Chathurangi, Neophytou, Neophytos

论文摘要

新型化合物的预测性能筛选可以显着促进有效,廉价和无毒的热电材料的发现。目前正在实施与材料数据库结合的机器学习技术的巨大努力,但是采用的计算方法可以极大地影响结果。关于电子传输和功率因数计算,最广泛采用和计算有效的方法是恒定的松弛时间近似(CRT)。这项工作超越了CRT,并采用了电子音波和电离杂质散射的适当,充分的能量和动量依赖性,以计算电子传输并对一组半手合金进行功率因数优化。然后确定基于这种更高级处理的最佳功率因数的材料参数。这使得可以在材料筛选研究中使用的一组显着改进的描述符的发展,并更深入地了解高性能热电材料的潜在性质。我们已经将$ n_v $$ε_r$ / $ d_o^2m_ {cond} $确定为最有用和通用的描述符,山谷数量的组合,介电常数,电导率有效质量以及主导电子过程的变形潜力。提出的描述符可以以更准确和可靠的方式加速发现新的高效和环境友好热电材料,并提出了一些非常高性能材料的预测。

The predictive performance screening of novel compounds can significantly promote the discovery of efficient, cheap, and non-toxic thermoelectric materials. Large efforts to implement machine-learning techniques coupled to materials databases are currently being undertaken, but the adopted computational methods can dramatically affect the outcome. With regards to electronic transport and power factor calculations, the most widely adopted and computationally efficient method, is the constant relaxation time approximation (CRT). This work goes beyond the CRT and adopts the proper, full energy and momentum dependencies of electron-phonon and ionized impurity scattering, to compute the electronic transport and perform power factor optimization for a group of half-Heusler alloys. Then the material parameters that determine the optimal power factor based on this more advanced treatment are identified. This enables the development of a set of significantly improved descriptors that can be used in materials screening studies, and which offer deeper insights into the underlying nature of high performance thermoelectric materials. We have identified $n_v$$ε_r$ / $D_o^2m_{cond}$ as the most useful and generic descriptor, a combination of the number of valleys, the dielectric constant, the conductivity effective mass, and the deformation potential for the dominant electron-phonon process. The proposed descriptors can accelerate the discovery of new efficient and environment friendly thermoelectric materials in a much more accurate and reliable manner, and some predictions for very high performance materials are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源