论文标题
在动力学尺度上的三维各向异性和尺度的观察定量
Observational quantification of three-dimensional anisotropies and scalings of space plasma turbulence at kinetic scales
论文作者
论文摘要
使用Magnetosheath中MMS的五年测量进行了空间等离子体湍流的光谱各向异性的统计调查。通过测量磁场的五点二阶结构函数,我们首次量化了亚离子量表处的三维各向异性和尺度($ <$ 100 km)。在本地参考框架中$(\ hat l _ {\ perp},\ hat l _ {\ perp},\ hat l _ {\ parallel})$针对本地平均磁场$ \ boldsymbol {b} _0 $(Chen等人(Chen等人),已找到“统计EDDIES”,$ bold the the the the the ob the是$ the the of fess, {b} _0 $,并以垂直于$ \ boldsymbol {b} _0 $和本地字段波动的方向缩短。从几个$ d_i $(离子惯性长度)到$ \ sim $ 0.05 $ d_i $,涡流的平行和垂直长度之间的比例具有上升的趋势,而垂直平面中的各向异性似乎是规模不变。具体而言,总磁场的各向异性关系在0.1-1.0 $ d_i $中获得为$ l _ {\ parallel} \ simeq 2.44 \ cdot l _ {\ perp}^0.71} $ l _ {\ perp}^{1.08} $。我们的结果提供了新的观察证据,可以与现象学模型和数值模拟进行比较,这可能有助于更好地理解动力学尺度湍流的性质。
A statistical survey of spectral anisotropy of space plasma turbulence is performed using five years measurements from MMS in the magnetosheath. By measuring the five-point second-order structure functions of the magnetic field, we have for the first time quantified the three-dimensional anisotropies and scalings at sub-ion-scales ($<$ 100 km). In the local reference frame $(\hat L_{\perp}, \hat l_{\perp}, \hat l_{\parallel})$ defined with respect to local mean magnetic field $\boldsymbol {B}_0$ (Chen et al. 2012), the "statistical eddies" are found to be mostly elongated along $\boldsymbol {B}_0$ and shortened in the direction perpendicular to both $\boldsymbol {B}_0$ and local field fluctuations. From several $d_i$ (ion inertial length) toward $\sim$ 0.05 $d_i$, the ratio between eddies' parallel and perpendicular lengths features a trend of rise then fall, whereas the anisotropy in the perpendicular plane appears scale-invariant. Specifically, the anisotropy relations for the total magnetic field at 0.1-1.0 $d_i$ are obtained as $l_{\parallel} \simeq 2.44 \cdot l_{\perp}^{0.71}$, and $L_{\perp} \simeq 1.58 \cdot l_{\perp}^{1.08}$, respectively. Our results provide new observational evidence to compare with phenomenological models and numerical simulations, which may help to better understand the nature of kinetic scale turbulence.