论文标题
Rényi和von Neumann的热状态的熵,以普遍不确定性原理校正的谐波振荡器
Rényi and von Neumann entropies of thermal state in Generalized Uncertainty Principle-corrected harmonic oscillator
论文作者
论文摘要
在广义不确定性原理(GUP)校正的单谐波振荡器系统中,在热状态下的Rényi和von Neumann熵被明确计算在GUP参数$α$的一阶中。虽然$α= 0 $的冯·诺伊曼(Von Neumann)熵在外部温度中表现出单调增加的行为,但非零的GUP参数使von Neumann熵的行为减少了大温度区域。结果,如果$α\ neq 0 $,则在有限温度下最大化von Neumann熵。 rényi熵$s_γ$带有非零$α$的Rényi熵在大温度区域也表现出相似的行为。在该区域,随着温度的升高,Rényi熵表现出降低的行为。当rényi熵$γ$的订单较小时,降低的速度就会更大。
The Rényi and von Neumann entropies of the thermal state in the generalized uncertainty principle (GUP)-corrected single harmonic oscillator system are explicitly computed within the first order of the GUP parameter $α$. While the von Neumann entropy with $α= 0$ exhibits a monotonically increasing behavior in external temperature, the nonzero GUP parameter makes the decreasing behavior of the von Neumann entropy at the large temperature region. As a result, the von Neumann entropy is maximized at the finite temperature if $α\neq 0$. The Rényi entropy $S_γ$ with nonzero $α$ also exhibits similar behavior at the large temperature region. In this region the Rényi entropy exhibit decreasing behavior with increasing the temperature. The decreasing rate becomes larger when the order of the Rényi entropy $γ$ is smaller.