论文标题

感染性角膜炎的临床图像分类中的深层顺序学习

Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis

论文作者

Xu, Yesheng, Kong, Ming, Xie, Wenjia, Duan, Runping, Fang, Zhengqing, Lin, Yuxiao, Zhu, Qiang, Tang, Siliang, Wu, Fei, Yao, Yu-Feng

论文摘要

传染性角膜炎是角膜疾病的最常见实体,其中病原体在角膜中生长,导致角膜组织的炎症和破坏。传染性角膜炎是一种医疗紧急情况,需要快速,准确的诊断才能快速开始迅速而精确的治疗,以阻止疾病进展并限制角膜损害的程度;否则,它可能会产生危及视力范围甚至危及眼球的状况。在本文中,我们提出了一个顺序级别的深度学习模型,以通过临床图像的分类有效地区分传染性角膜疾病的区别和微妙。在这种方法中,我们设计了一种适当的机制,可以保留临床图像的空间结构,并解散传染性角膜炎临床图像分类的信息特征。在与421位眼科医生的竞争中,提议的顺序级别模型的性能达到了80.00%的诊断准确性,远胜于眼科医生在120张测试图像上实现的49.27%的诊断准确性。

Infectious keratitis is the most common entities of corneal diseases, in which pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues. Infectious keratitis is a medical emergency, for which a rapid and accurate diagnosis is needed for speedy initiation of prompt and precise treatment to halt the disease progress and to limit the extent of corneal damage; otherwise it may develop sight-threatening and even eye-globe-threatening condition. In this paper, we propose a sequential-level deep learning model to effectively discriminate the distinction and subtlety of infectious corneal disease via the classification of clinical images. In this approach, we devise an appropriate mechanism to preserve the spatial structures of clinical images and disentangle the informative features for clinical image classification of infectious keratitis. In competition with 421 ophthalmologists, the performance of the proposed sequential-level deep model achieved 80.00% diagnostic accuracy, far better than the 49.27% diagnostic accuracy achieved by ophthalmologists over 120 test images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源