论文标题
汤普森组的非理性斜率版本$ t $和$ v $
Irrational-slope versions of Thompson's groups $T$ and $V$
论文作者
论文摘要
在本文中,我们考虑了[3]中考虑的非理性Slope Thompson Group $f_τ$的$ t $ - 和$ v $ - $t_τ$和$t_τ$和$v_τ$。我们为这些小组提供无限的演讲,并展示如何用类似于$ t $和$ v $的树对图来表示它们。我们还表明,$T_τ$和$V_τ$具有索引-2普通子组,与原始汤普森对应物$ t $和$ v $不同。这些INDEX-2亚组显示很简单。
In this paper we consider the $T$- and $V$- versions, $T_τ$ and $V_τ$ , of the irrational slope Thompson group $F_τ$ considered in [3]. We give infinite presentations for these groups and show how they can be represented by tree-pair diagrams similar to those for $T$ and $V$. We also show that $T_τ$ and $V_τ$ have index-2 normal subgroups, unlike their original Thompson counterparts $T$ and $V$. These index-2 subgroups are shown to be simple.