论文标题
尽管模式为零,但构建量子孤子状态
Constructing Quantum Soliton States Despite Zero Modes
论文作者
论文摘要
在经典的Lorentz-Invariant场理论中,局部孤子解决方案必然会打破翻译对称性。在相应的量子场理论中,将位置进行量化,如果该理论未交流,则它们具有连续的光谱。长期以来,人们一直认为,普通的扰动理论不适用于连续体国家。在这里,我们认为,作为哈密顿量和动量操作员通勤,如果首先强加这种总动量消失,则可以在扰动理论中找到孤子基态。作为例证,我们发现对正弦索尼顿正弦状态的量子校正。
In classical Lorentz-invariant field theories, localized soliton solutions necessarily break translation symmetry. In the corresponding quantum field theories, the position is quantized and, if the theory is not compactified, they have continuous spectra. It has long been appreciated that ordinary perturbation theory is not applicable to continuum states. Here we argue that, as the Hamiltonian and momentum operators commute, the soliton ground state can nonetheless be found in perturbation theory if one first imposes that the total momentum vanishes. As an illustration, we find the subleading quantum correction to the ground state of the Sine-Gordon soliton.