论文标题

参考引导的面部组件编辑

Reference-guided Face Component Editing

论文作者

Deng, Qiyao, Cao, Jie, Liu, Yunfan, Chai, Zhenhua, Li, Qi, Sun, Zhenan

论文摘要

近年来,面部肖像编辑取得了巨大进展。但是,先前的方法要么1)在预定义的面部属性上操作,缺少控制高级语义面部面部成分形状的灵活性(例如眼睛,鼻子,嘴巴),或2)以手动编辑的面具或草图为中间表示,但要进行额外的额外努力才能获得额外的努力。为了打破现有方法的局限性(例如形状,掩盖或草图),我们提出了一个新颖的框架,称为R-FACE(参考引导的面部组件编辑),以使用几何变化进行多种可控的面部组件编辑。具体而言,R-FACE将图像镶嵌模型作为主链,利用参考图像作为控制面部成分形状的条件。为了鼓励框架集中在目标面部成分上,示例引导的注意模块旨在融合注意力特征和从参考图像中提取的目标面部成分特征。通过广泛的实验验证和比较,我们验证了提出的框架的有效性。

Face portrait editing has achieved great progress in recent years. However, previous methods either 1) operate on pre-defined face attributes, lacking the flexibility of controlling shapes of high-level semantic facial components (e.g., eyes, nose, mouth), or 2) take manually edited mask or sketch as an intermediate representation for observable changes, but such additional input usually requires extra efforts to obtain. To break the limitations (e.g. shape, mask or sketch) of the existing methods, we propose a novel framework termed r-FACE (Reference-guided FAce Component Editing) for diverse and controllable face component editing with geometric changes. Specifically, r-FACE takes an image inpainting model as the backbone, utilizing reference images as conditions for controlling the shape of face components. In order to encourage the framework to concentrate on the target face components, an example-guided attention module is designed to fuse attention features and the target face component features extracted from the reference image. Through extensive experimental validation and comparisons, we verify the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源