论文标题
所有推荐系统的有效歧管密度估计器
An efficient manifold density estimator for all recommendation systems
论文作者
论文摘要
许多无监督的表示学习方法属于相似性学习模型的类别。尽管对于不同类型的数据存在各种特定于模式的方法,但许多方法的核心属性是,在某些相似性函数下,相似输入的表示是接近的。我们提出EMDE(有效的流形密度估计器) - 利用局部相似性的任意矢量表示的框架,与简洁的概率密度平滑表示Riemannian歧管上的平滑概率密度。我们的近似表示具有固定大小和具有简单添加成分的理想特性,因此特别适合用神经网络进行治疗(无论是输入和输出格式),从而产生有效的条件估计器。我们将多模式建议的问题概括为流形的条件加权密度估计。我们的方法可以使多种相互作用类型,数据模式以及任何推荐设置的相互作用强度进行微不足道。将EMDE应用于TOP-K和基于会话的推荐设置,我们在Uni-Modal和Multi-Mododal设置的多个开放数据集上建立了新的最新结果。
Many unsupervised representation learning methods belong to the class of similarity learning models. While various modality-specific approaches exist for different types of data, a core property of many methods is that representations of similar inputs are close under some similarity function. We propose EMDE (Efficient Manifold Density Estimator) - a framework utilizing arbitrary vector representations with the property of local similarity to succinctly represent smooth probability densities on Riemannian manifolds. Our approximate representation has the desirable properties of being fixed-size and having simple additive compositionality, thus being especially amenable to treatment with neural networks - both as input and output format, producing efficient conditional estimators. We generalize and reformulate the problem of multi-modal recommendations as conditional, weighted density estimation on manifolds. Our approach allows for trivial inclusion of multiple interaction types, modalities of data as well as interaction strengths for any recommendation setting. Applying EMDE to both top-k and session-based recommendation settings, we establish new state-of-the-art results on multiple open datasets in both uni-modal and multi-modal settings.