论文标题

显着性:显着指导的数据增强策略,以改善正则化

SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization

论文作者

Uddin, A. F. M. Shahab, Monira, Mst. Sirazam, Shin, Wheemyung, Chung, TaeChoong, Bae, Sung-Ho

论文摘要

已广泛研究了高级数据增强策略,以提高深度学习模型的概括能力。区域辍学是一种流行的解决方案之一,它通过随机删除图像区域来指导模型关注较小的判别零件,从而改善正则化。但是,此类信息删除是不可取的。另一方面,最近的策略建议在训练图像之间随机切割和混合贴片及其标签,以享受区域辍学的优势,而不会在增强图像中没有任何毫无意义的像素。我们认为,补丁的这种随机选择策略可能不一定代表有关相应对象的足够信息,从而根据该非信息贴片混合标签,使该模型能够学习意外的特征表示。因此,我们提出了显着性,该显着性借助显着图仔细选择了代表性的图像贴片,并将此指示性贴片与目标图像混合在一起,从而导致模型学习了更合适的特征表示。对于Resnet-50和Resnet-101的ImageNet分类,显着性达到了21.26%和20.09%的最著名的TOP-1误差,并分别提高了针对对抗性扰动的模型鲁棒性。此外,经过显着性训练的模型有助于提高对象检测性能。源代码可从https://github.com/saliencemix/saliteymix获得。

Advanced data augmentation strategies have widely been studied to improve the generalization ability of deep learning models. Regional dropout is one of the popular solutions that guides the model to focus on less discriminative parts by randomly removing image regions, resulting in improved regularization. However, such information removal is undesirable. On the other hand, recent strategies suggest to randomly cut and mix patches and their labels among training images, to enjoy the advantages of regional dropout without having any pointless pixel in the augmented images. We argue that such random selection strategies of the patches may not necessarily represent sufficient information about the corresponding object and thereby mixing the labels according to that uninformative patch enables the model to learn unexpected feature representation. Therefore, we propose SaliencyMix that carefully selects a representative image patch with the help of a saliency map and mixes this indicative patch with the target image, thus leading the model to learn more appropriate feature representation. SaliencyMix achieves the best known top-1 error of 21.26% and 20.09% for ResNet-50 and ResNet-101 architectures on ImageNet classification, respectively, and also improves the model robustness against adversarial perturbations. Furthermore, models that are trained with SaliencyMix help to improve the object detection performance. Source code is available at https://github.com/SaliencyMix/SaliencyMix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源