论文标题

学习进行多帧波前传感:盲目卷积的应用

Learning to do multiframe wavefront sensing unsupervisedly: applications to blind deconvolution

论文作者

Ramos, A. Asensio, Olspert, N.

论文摘要

地面望远镜的观察受到地球大气的存在的影响,这严重散布了它们。自适应光学技术的使用使我们能够部分击败此限制。但是,通常需要将图像选择或事后图像重建方法应用于短曝光图像的突发,以达到衍射极限。最近已经提出了深度学习作为加速这些图像重建的一种有效方法。当前,这些深层神经网络经过监督训练,因此需要对太阳能磁磁体进行A-PRIORI的标准反卷积算法或复杂的模拟进行训练,以生成训练集。我们在这里的目的是提出一项一般无监督的培训计划,该计划允许简单地通过观察结果对多帧盲型反卷积深度学习系统进行培训。该方法可以应用于校正点状以及扩展对象。利用线性图像形成理论和盲目反卷积问题的概率方法会产生物理动机的损失函数。此损失功能的优化允许对由三个神经网络组成的机器学习模型进行端到端培训。作为示例,我们将此过程应用于FastCAM仪器的恒星数据和瑞典太阳能望远镜的太阳扩展数据的反卷积。分析表明,只有仅使用观察结果就可以成功地训练所提出的神经模型。它提供了瞬时波前的估计,可以从中使用标准反卷积技术找到校正的图像。网络模型比基于优化应用标准反卷积的速度大约要快三个数量级,并且显示了在望远镜上实时使用的潜力。

Observations from ground based telescopes are affected by the presence of the Earth atmosphere, which severely perturbs them. The use of adaptive optics techniques has allowed us to partly beat this limitation. However, image selection or post-facto image reconstruction methods applied to bursts of short-exposure images are routinely needed to reach the diffraction limit. Deep learning has been recently proposed as an efficient way to accelerate these image reconstructions. Currently, these deep neural networks are trained with supervision, so that either standard deconvolution algorithms need to be applied a-priori or complex simulations of the solar magneto-convection need to be carried out to generate the training sets. Our aim here is to propose a general unsupervised training scheme that allows multiframe blind deconvolution deep learning systems to be trained simply with observations. The approach can be applied for the correction of point-like as well as extended objects. Leveraging the linear image formation theory and a probabilistic approach to the blind deconvolution problem produces a physically-motivated loss function. The optimization of this loss function allows an end-to-end training of a machine learning model composed of three neural networks. As examples, we apply this procedure to the deconvolution of stellar data from the FastCam instrument and to solar extended data from the Swedish Solar Telescope. The analysis demonstrates that the proposed neural model can be successfully trained without supervision using observations only. It provides estimations of the instantaneous wavefronts, from which a corrected image can be found using standard deconvolution technniques. The network model is roughly three orders of magnitude faster than applying standard deconvolution based on optimization and shows potential to be used on real-time at the telescope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源