论文标题

迈向无功能TSP求解器选择:一种深度学习方法

Towards Feature-free TSP Solver Selection: A Deep Learning Approach

论文作者

Zhao, Kangfei, Liu, Shengcai, Rong, Yu, Yu, Jeffrey Xu

论文摘要

旅行推销员问题(TSP)是一个经典的NP硬性问题,在许多学科和行业中都有广泛的应用。在基于位置的大型服务系统中,用户同时发出TSP查询,其中TSP查询是一个带有$ n $点的TSP实例。在文献中,开发了许多先进的TSP求解器来找到高质量的解决方案。这样的求解器可以有效地解决某些TSP实例,但对于其他一些实例可能需要很长时间。由于TSP实例的多样性,众所周知,在所有可能的TSP实例上都没有普遍的最佳求解器来主导所有其他求解器。为了有效地求解TSP,除了开发新的TSP求解器外,还需要为每个TSP实例找到一个每类求解器,这被称为TSP求解器选择问题。在本文中,我们第一次提出了一个深度学习框架\ ctas,以端到端的方式进行TSP求解器选择。具体而言,\ ctas利用深度卷积神经网络从TSP实例中提取信息特征,并涉及数据论证策略以处理标记的TSP实例的稀缺性。此外,为了支持大型TSP求解器选择,我们使用6,000个实例构建了一个具有挑战性的TSP基准数据集,这是最大的TSP基准。我们的\ ctas实现了平均运行时间的2 $ \ times $速度,比较单个最佳求解器,并且表现优于最先进的统计模型。

The Travelling Salesman Problem (TSP) is a classical NP-hard problem and has broad applications in many disciplines and industries. In a large scale location-based services system, users issue TSP queries concurrently, where a TSP query is a TSP instance with $n$ points. In the literature, many advanced TSP solvers are developed to find high-quality solutions. Such solvers can solve some TSP instances efficiently but may take an extremely long time for some other instances. Due to the diversity of TSP instances, it is well-known that there exists no universal best solver dominating all other solvers on all possible TSP instances. To solve TSP efficiently, in addition to developing new TSP solvers, it needs to find a per-instance solver for each TSP instance, which is known as the TSP solver selection problem. In this paper, for the first time, we propose a deep learning framework, \CTAS, for TSP solver selection in an end-to-end manner. Specifically, \CTAS exploits deep convolutional neural networks to extract informative features from TSP instances and involves data argumentation strategies to handle the scarcity of labeled TSP instances. Moreover, to support large scale TSP solver selection, we construct a challenging TSP benchmark dataset with 6,000 instances, which is known as the largest TSP benchmark. Our \CTAS achieves over 2$\times$ speedup of the average running time, comparing the single best solver, and outperforms the state-of-the-art statistical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源