论文标题

无限的许多小解决方案,用于具有奇异非线性的可变指数的椭圆形PDE

Infinitely many small solutions to an elliptic PDE of variable exponent with a singular nonlinearity

论文作者

Ghosh, Sekhar, Choudhuri, Debajyoti, Giri, Ratan Kr.

论文摘要

我们证明了对以下非本地椭圆偏微分方程的无限多个非负解的存在 (-Δ)_ {p(\ cdot)}^{s} u&= \fracλ{| u |^{γ(x)-1} u}+f(x,x,x,u)〜\ text {in} 〜Ω,\ nonumber u&= 0〜 \ text {in}〜\ mathbb {r}^n \setMinusΩ,\ nonumber \ end {align},其中$ω\ subset \ subset \ subset \ mathbb {r}^n,\,\,n \ geq2 $是一个平稳的,有界的,有边界的,$ c $,$λ> 0 $,$,$,$,0,1 \,(0,1)所有$ x \ in \barΩ$,$ n> sp(x,y)$的$γ(x)\ in \barΩ非线性功能$ f $满足某些增长条件。此外,我们通过Moser Iteration Technique建立了一个均匀的$ l^{\ infty}(\barΩ)$估计。

We prove the existence of infinitely many nonnegative solutions to the following nonlocal elliptic partial differential equation involving singularities \begin{align} (-Δ)_{p(\cdot)}^{s} u&=\fracλ{|u|^{γ(x)-1}u}+f(x,u)~\text{in}~Ω,\nonumber u&=0~\text{in}~\mathbb{R}^N\setminusΩ,\nonumber \end{align} where $Ω\subset\mathbb{R}^N,\, N\geq2$ is a smooth, bounded domain, $λ>0$, $s\in (0,1)$, $γ(x)\in(0,1)$ for all $x\in\barΩ$, $N>sp(x,y)$ for all $(x,y)\in\barΩ\times\barΩ$ and $(-Δ)_{p(\cdot)}^{s}$ is the fractional $p(\cdot)$-Laplacian operator with variable exponent. The nonlinear function $f$ satisfies certain growth conditions. Moreover, we establish a uniform $L^{\infty}(\barΩ)$ estimate of the solution(s) by the Moser iteration technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源