论文标题

具有不确定性定量的多效率机学习和贝叶斯优化材料设计:应用于三元随机合金

Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys

论文作者

Tran, Anh, Tranchida, Julien, Wildey, Tim, Thompson, Aidan P.

论文摘要

我们提出了一种基于多保真(MF)机器学习(ML)框架利用高斯流程(GP)的尺度桥接方法,以融合多个保真度的原子计算模型预测。通过MFGP的后差,我们的框架自然可以实现不确定性量化,从而估计了对预测的信心。我们使用密度功能理论作为高保真预测,而ML的原子势被用作低保真预测。实用材料设计效率是通过重现在整个铝二烷基三硝基二烷二烷二烷tranary随机合金组成空间的含量(散装模量)的三元组成依赖性来证明的。然后将MFGP耦合到贝叶斯优化过程,并通过在三元组成空间中对全局最佳模量进行全局最佳的批量最佳搜索来证明这种方法的计算效率。本手稿中介绍的框架是MFGP在原子材料模拟中的第一次应用,从而融合了密度功能理论和经典的原子间潜在计算之间的预测。

We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used Density Functional Theory as high-fidelity prediction, while a ML interatomic potential is used as the low-fidelity prediction. Practical materials design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between Density Functional Theory and classical interatomic potential calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源