论文标题

在阴离子的ruddlesden-popper卤化物钙钛矿中,用于可调光电应用的轨道 - 能源分裂

Orbital-Energy Splitting in Anion Ordered Ruddlesden-Popper Halide Perovskites for Tunable Optoelectronic Applications

论文作者

Tang, Gang, Wang, Vei, Zhang, Yajun, Ghosez, Philippe, Hong, Jiawang

论文摘要

带边缘的电子轨道特性在确定钙钛矿光伏材料的电,光学和缺陷特性方面起着重要作用。非常需要建立基础原子轨道与光电特性之间的关系,以最大程度地提高光伏性能。 Here, using first-principles calculations and taking anion ordered Ruddlesden-Popper (RP) phase halide perovskites Cs$_{n+1}$Ge$_n$I$_{n+1}$Cl$_{2n}$ as an example, we demonstrate how to rationally optimize the optoelectronic properties (e.g., band gap, transition dipole matrix元素,载体有效质量,带宽)通过简单的带结构参数。我们的结果表明,降低B位原子P轨道的分裂能量$ |ΔC| $可以有效地减少带隙和载体有效质量,同时大大改善可见区域的光吸收。因此,通过双轴压缩应变可以很好地确定与$ΔC$的轨道性关系。最后,结果表明,该方法可以合理地扩展到其他几种在传导带边缘具有相似p轨道特征的非立我们的卤化物钙钛矿。因此,我们认为我们提出的轨道工程方法为理解和优化分层钙钛矿太阳能电池的设备性能提供了原子级指南。

The electronic orbital characteristics at the band edges plays an important role in determining the electrical, optical and defect properties of perovskite photovoltaic materials. It is highly desirable to establish the relationship between the underlying atomic orbitals and the optoelectronic properties as a guide to maximize the photovoltaic performance. Here, using first-principles calculations and taking anion ordered Ruddlesden-Popper (RP) phase halide perovskites Cs$_{n+1}$Ge$_n$I$_{n+1}$Cl$_{2n}$ as an example, we demonstrate how to rationally optimize the optoelectronic properties (e.g., band gap, transition dipole matrix elements, carrier effective masses, band width) through a simple band structure parameter. Our results show that reducing the splitting energy $|Δc|$ of p orbitals of B-site atom can effectively reduce the band gap and carrier effective masses while greatly improving the optical absorption in the visible region. Thereby, the orbital-property relationship with $Δc$ is well established through biaxial compressive strain. Finally, it is shown that this approach can be reasonably extended to several other non-cubic halide perovskites with similar p orbitals characteristics at the conduction band edges. Therefore, we believe that our proposed orbital engineering approach provides atomic-level guidance for understanding and optimizing the device performance of layered perovskite solar cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源