论文标题

操作数据最小化的法律原则以进行个性化

Operationalizing the Legal Principle of Data Minimization for Personalization

论文作者

Biega, Asia J., Potash, Peter, Daumé III, Hal, Diaz, Fernando, Finck, Michèle

论文摘要

欧盟一般数据保护法规(GDPR)的第5条第(1)款(c)条要求“个人数据应具有足够的,相关且仅限于处理其处理目的所必需的内容(``数据最小化'')。迄今为止,“目的限制”和“数据最小化”的法律和计算定义在很大程度上尚不清楚。特别是,这些原则的解释是信息访问系统的一个开放问题,可以通过个性化来优化用户体验,并且不严格要求个人数据收集基本服务。 在本文中,我们发现缺乏对数据最小化原则的同质解释,并探讨了适用于个性化背景的两个操作定义。我们的经验研究在推荐系统领域的重点是提供有关(i)不同数据最小化定义的可行性(ii)不同建议算法以最小化的鲁棒性的基础见解,并且(iiii)的性能是不同的最小化策略的性能。我们发现,对数据的效果降低了,但可能会降低这种效果,但可能会降低这种情况 - 但可能会造成这种情况的影响 - 但可能会导致这种情况 - 某种程度上可能存在这种情况 - 某种程度上可能会造成这种情况 - 某种程度上 - 某种程度上 - 某种程度上 - 某种程度上可能会降低这种情况。不同正式最小化定义的生存能力。总体而言,我们的分析在个性化的背景下发现了数据最小化问题的复杂性,并绘制了其余的计算和监管挑战。

Article 5(1)(c) of the European Union's General Data Protection Regulation (GDPR) requires that "personal data shall be [...] adequate, relevant, and limited to what is necessary in relation to the purposes for which they are processed (`data minimisation')". To date, the legal and computational definitions of `purpose limitation' and `data minimization' remain largely unclear. In particular, the interpretation of these principles is an open issue for information access systems that optimize for user experience through personalization and do not strictly require personal data collection for the delivery of basic service. In this paper, we identify a lack of a homogeneous interpretation of the data minimization principle and explore two operational definitions applicable in the context of personalization. The focus of our empirical study in the domain of recommender systems is on providing foundational insights about the (i) feasibility of different data minimization definitions, (ii) robustness of different recommendation algorithms to minimization, and (iii) performance of different minimization strategies.We find that the performance decrease incurred by data minimization might not be substantial, but that it might disparately impact different users---a finding which has implications for the viability of different formal minimization definitions. Overall, our analysis uncovers the complexities of the data minimization problem in the context of personalization and maps the remaining computational and regulatory challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源