论文标题

相对平衡状态的乘法性厄贡理论表征

A multiplicative ergodic theoretic characterization of relative equilibrium states

论文作者

Antonioli, John, Hong, Soonjo, Quas, Anthony

论文摘要

在本文中,我们将继续对符号动力学系统和相对热力学形式主义的因子图的结构研究。在这里,人们正在研究一个因子图,从有限型$ x $(配备了潜在功能)到配备偏移不变的度量$ν$的shift shift $ z $的因子图。我们研究了相对平衡状态,即$ x $的换档措施,在因子图下向前推向$ν$,从而最大化相对压力:相对熵加上$ ϕ $的积分。 在非相关的情况下(其中$ z $是一个点转移,而因子图是微不足道的),这些措施具有非常广泛的应用:在双曲动力学,信息理论,几何学,Teichmüller理论等方面)。在几何度量理论中,相对平衡状态在某些情况下也自然出现,作为对实现环境空间中Hausdorff维度的衡量标准的描述。先前的文章已经确定了在一维符号设置中出现的知名度概念的相对版本,并根据这些符号的界限建立了界限,这些界限是基于千古相对平衡状态的数量。 在本文中,我们通过将这些因子三元组与Ruelle Perron-Frobenius算子的共生关系联系起来,建立了与乘法千古理论的新联系,并表明该合子的主要Lyapunov指数是相对压力。前导Oseledets空间的尺寸等于相对最大熵的度量数,并以先前识别的多重性概念计数。

In this article, we continue the structural study of factor maps betweeen symbolic dynamical systems and the relative thermodynamic formalism. Here, one is studying a factor map from a shift of finite type $X$ (equipped with a potential function) to a sofic shift $Z$, equipped with a shift-invariant measure $ν$. We study relative equilibrium states, that is shift-invariant measures on $X$ that push forward under the factor map to $ν$ which maximize the relative pressure: the relative entropy plus the integral of $ϕ$. In the non-relative case (where $Z$ is the one point shift and the factor map is trivial), these measures have a very broad range of application: in hyperbolic dynamics, information theory, geometry, Teichmüller theory and elsewhere). Relative equilibrium states have also been shown to arise naturally in some contexts in geometric measure theory as a description of measures achieving the Hausdorff dimension in ambient spaces. Previous articles have identified relative versions of well-known notions of degree appearing in one-dimensional symbolic settings, and established bounds in terms of these on the number of ergodic relative equilibrium states. In this paper, we establish a new connection to multiplicative ergodic theory by relating these factor triples to a cocycle of Ruelle Perron-Frobenius operators, and showing that the principal Lyapunov exponent of this cocycle is the relative pressure; and the dimension of the leading Oseledets space is equal to the number of measures of relative maximal entropy, counted with a previously-identified concept of multiplicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源