论文标题
非极性溶剂的硬球溶质成分的简单静电模型
A Simple Electrostatic Model for the Hard-Sphere Solute Component of Nonpolar Solvation
论文作者
论文摘要
我们提出了一个新的模型,用于估计溶剂中形成分子腔的自由能,假设该能量由与在腔体内产生静态(界面)电位相关的静电能支配。新模型将腔构形成能量与壳电容器的腔化能:内部的溶质形导体保持在静态电势,并且外导体(在第一个溶剂壳处)保持在零电位。与使用显式溶剂分子动力学计算的空腔能量相比,新模型表现出令人惊讶的精度(Mobley测试集,RMSE 0.45 kcal/mol)。结合用于溶质 - 溶剂范德华相互作用的修改后的连续模型,在此测试集中,总非极性模型的RMSE为0.55 kcal/mol,这是非常了不起的,因为两个术语很大程度上取消。总体非极性模型具有少数物理上有意义的参数,并与其他已发表的非极性溶剂化模型进行了比较。最后,当提出的非极性模型与我们的溶剂化层界面条件(SLIC)连续静电模型结合使用,其中包括不对称的溶剂化螺旋响应,我们预测溶剂化自由能,RMS误差为1.35 kcal/MOL相对于实验,可与显式 - 摩尔值fep fep fep fep fep fep(1.26 kcal)相当。此外,我们模型中的所有参数都具有明确的物理含义,并且采用合理的温度依赖性产生了与溶剂化熵显着相关的。
We propose a new model for estimating the free energy of forming a molecular cavity in a solvent, by assuming this energy is dominated by the electrostatic energy associated with creating the static (interface) potential inside the cavity. The new model approximates the cavity-formation energy as that of a shell capacitor: the inner, solute-shaped conductor is held at the static potential, and the outer conductor (at the first solvation shell) is held at zero potential. Compared to cavity energies computed using free-energy pertubation with explicit-solvent molecular dynamics, the new model exhibits surprising accuracy (Mobley test set, RMSE 0.45 kcal/mol). Combined with a modified continuum model for solute-solvent van der Waals interactions, the total nonpolar model has RMSE of 0.55 kcal/mol on this test set, which is remarkable because the two terms largely cancel. The overall nonpolar model has a small number of physically meaningful parameters and compares favorably to other published models of nonpolar solvation. Finally, when the proposed nonpolar model is combined with our solvation-layer interface condition (SLIC) continuum electrostatic model, which includes asymmetric solvation-shell response, we predict solvation free energies with an RMS error of 1.35 kcal/mol relative to experiment, comparable to the RMS error of explicit-solvent FEP (1.26 kcal/mol). Moreover, all parameters in our model have a clear physical meaning, and employing reasonable temperature dependencies yields remarkable correlation with solvation entropies.