论文标题

在Enriques表面上的12个合理曲线

12 rational curves on Enriques surfaces

论文作者

Rams, Sławomir, Schütt, Matthias

论文摘要

给定d,我们证明,任何极化的Enrique表面(在与2个特征不同或具有光滑K3盖的特征范围内)大于12d^2的程度最多包含12个理性曲线。对于d> 2,我们构建了高度含量的Enriques示例,该表面完全包含12个有理学D曲线。

Given d in IN, we prove that any polarized Enriques surface (over any field of characteristic different from 2 or with a smooth K3 cover) of degree greater than 12d^2 contains at most 12 rational curves of degree at most d. For d>2 we construct examples of Enriques surfaces of high degree that contain exactly 12 rational degree d curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源