论文标题
电厚的Fabry-Pérotomega Bianisotropic Metasurfaces作为虚拟反射涂层和非本地场变压器
Electrically Thick Fabry-Pérot Omega Bianisotropic Metasurfaces as Virtual Anti-Reflective Coatings and Non-Local Field Transformers
论文作者
论文摘要
Omega Bianisotropic metasurfaces(OBM)提供了以前与Huygens的Metasurfaces(HMS)可用的波控制能力。这些增强功能来自OBM提供的额外自由度,并基于对具有抽象表面阻抗特性的零厚度表面的分析。但是,实用的元城设计已被证明是乏味的。本文中,我们提出了一种易于设计的新颖,易于设计的结构,以实现OBMS。扩展了以前的工作,我们表明,两个明智地设计的Fabry-Perot(FP)Etalons的不对称级联反应可以形成一个OBMS元原子,以提供所需的波浪控制能力。为了实现这种异常折射的FP-OBM,我们表明双氏疗法在HMS上有效地产生了虚拟的抗反射涂层,从而导致OBMS效率提高。这种有趣的观察结果以近似封闭形式的解决方案为支持,提供了对完美异常折射的机制的原始物理解释,并用于与HMS相比,OBM的角度响应首次解释。为了实现fp-obm,以实现梁拆分功能更复杂的功能,我们表明FP-OBM能够非本地激发该末端所需的表面波,尽管电是电厚。通过全波计算验证的这些结果证明了所提出的配置精心再现理想(摘要)零厚度OBM的散射特性的能力,从而铺平了通过外来功能实现波动传输的路径,其中一些从未与物理结构相关联。
Omega bianisotropic metasurfaces (OBMS) provide wave-control capabilities not previously available with Huygens' metasurfaces (HMS). These enhanced capabilities derive from the additional degree of freedom provided by OBMS, and are based on analyses of zero-thickness surfaces with abstract surface impedance properties. However, the design of practical metasurfaces has proven tedious. Herein, we propose a novel, easily designed structure to realize OBMSs. Extending our previous work, we show that an asymmetrical cascade of two judiciously engineered Fabry-Perot (FP) etalons could form an OBMS meta-atom to provide desired wave control capabilities. Implementing this FP-OBMS for anomalous refraction, we show that bianisotropy effectively produces a virtual anti-reflective coating over a HMS, leading to the OBMS efficiency enhancement. This intriguing observation, backed by an approximate closed-form solution, provides an original physical interpretation of the mechanism underlying perfect anomalous refraction, and is used to explain for the first time differences in the angular response of OBMS in comparison to HMS. Implementing the FP-OBMS for the more intricate functionality of beam-splitting, we show that the FP-OBMS are capable of non-local excitation of surface waves required to this end, despite being electrically thick. These results, verified via full-wave computations, demonstrate the ability of the proposed configuration to meticulously reproduce the scattering properties of ideal (abstract) zero-thickness OBMS, thereby paving the path to practical realization of wave transmission with exotic functionalities, some of which have never before been associated with a physical structure.