论文标题

项链折叠问题的上限

Upper bounds for the necklace folding problems

论文作者

Csóka, Endre, Blázsik, Zoltán L., Király, Zoltán, Lenger, Dániel

论文摘要

项链可以被视为$ n $红色和$ n $蓝色珠子的循环清单,目标是将其折叠成两种,并找到一对大型颜色的珠子的大型搭配。我们给出了关于项链折叠问题的猜想的反例,也称为分离的匹配问题。猜想(由三组作者独立给出)指出,$μ= \ frac {2} {3} $,其中$μ$是“覆盖”珠子与珠子总数的比例。 我们通过提供建筑物来反驳这种猜想,该建筑证明了$μ\ le 2 \ nolinebreak -\ nolinebreak \ sqrt 2 <0.5858 $。我们的构造也适用于同质模型:当我们匹配相同颜色的珠子时。此外,我们还考虑了两个颜色类不一定具有相同大小的问题。

A necklace can be considered as a cyclic list of $n$ red and $n$ blue beads in an arbitrary order, and the goal is to fold it into two and find a large cross-free matching of pairs of beads of different colors. We give a counterexample for a conjecture about the necklace folding problem, also known as the separated matching problem. The conjecture (given independently by three sets of authors) states that $μ=\frac{2}{3}$, where $μ$ is the ratio of the `covered' beads to the total number of beads. We refute this conjecture by giving a construction which proves that $μ\le 2 \nolinebreak - \nolinebreak \sqrt 2 < 0.5858$. Our construction also applies to the homogeneous model: when we are matching beads of the same color. Moreover, we also consider the problem where the two color classes not necessarily have the same size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源