论文标题
椭圆形的均匀度和theta函数的正常曲线
Elliptic normal curves of even degree and theta functions
论文作者
论文摘要
椭圆曲线可以沉浸在$ {\ Mathbf {p}}}^{n-1} $中,作为使用级别$ n $结构的度量$ n $曲线。如果$ n $很奇怪,则可以追溯到比安奇(Bianchi)和克莱因(Klein)。在本文中,我们研究了一些详细的案例。特别是,在复杂的数字字段上,我们使用适当选择的theta函数定义了沉浸式,并研究了它们满足的二次方程。
An elliptic curve may be immersed in ${\mathbf{P}}^{N-1}$ as a degree $N$ curve using level $N$ structure. In the case where $N$ is odd, there are well known classical results dating back to Bianchi and Klein. In this paper we study the case of even $N$ in some detail. In particular, over the complex number field, we define an immersion using suitably chosen theta functions, and study the quadratic equations satisfied by them.