论文标题

人工神经网络学到的强迫变化的指标模式

Indicator patterns of forced change learned by an artificial neural network

论文作者

Barnes, Elizabeth A., Toms, Benjamin, Hurrell, James W., Ebert-Uphoff, Imme, Anderson, Chuck, Anderson, David

论文摘要

气候科学中的许多问题都需要确定内部气候变异性的“噪声”和模型之间的差异所掩盖的信号。在先前的工作之后,我们训练人工神经网络(ANN),以确定强迫气候模型模拟的温度和降水状态年份。此预测任务要求ANN在气候噪声和模型差异的背景下学习强制性变化模式。然后,我们采用神经网络可视化技术(layerwise相关性传播)来可视化导致ANN成功预测年份的空间模式。因此,这些空间模式是强制变化的“可靠指标”。选择了ANN的架构使这些指标随时间变化,从而捕获了变化的区域信号的不断发展的性质。将结果与更标准的方法进行比较,例如信噪比和多线性回归,以便获得对ANN确定的可靠指标的直觉。然后,我们应用一个附加的可视化工具(向后优化),以突出显示模拟和观察到的变化模式中的分歧对于本年度的预测最重要。这项工作表明,ANN及其可视化工具是一个有力的搭配,用于提取强迫变化的气候模式。

Many problems in climate science require the identification of signals obscured by both the "noise" of internal climate variability and differences across models. Following previous work, we train an artificial neural network (ANN) to identify the year of input maps of temperature and precipitation from forced climate model simulations. This prediction task requires the ANN to learn forced patterns of change amidst a background of climate noise and model differences. We then apply a neural network visualization technique (layerwise relevance propagation) to visualize the spatial patterns that lead the ANN to successfully predict the year. These spatial patterns thus serve as "reliable indicators" of the forced change. The architecture of the ANN is chosen such that these indicators vary in time, thus capturing the evolving nature of regional signals of change. Results are compared to those of more standard approaches like signal-to-noise ratios and multi-linear regression in order to gain intuition about the reliable indicators identified by the ANN. We then apply an additional visualization tool (backward optimization) to highlight where disagreements in simulated and observed patterns of change are most important for the prediction of the year. This work demonstrates that ANNs and their visualization tools make a powerful pair for extracting climate patterns of forced change.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源