论文标题

培训数据如何影响基于学习的控制

How Training Data Impacts Performance in Learning-based Control

论文作者

Lederer, Armin, Capone, Alexandre, Umlauft, Jonas, Hirche, Sandra

论文摘要

当由于真实系统的复杂性而无法得出第一个原理模型时,数据驱动的方法使我们能够从系统观测值构建模型。由于这些模型是在基于学习的控制中使用的,因此数据的质量对于所得控制法的性能起着至关重要的作用。然而,几乎没有评估培训数据集的措施,并且数据分布对闭环系统属性的影响在很大程度上是未知的。本文基于高斯工艺模型得出的训练数据密度与控制性能之间的分析关系。我们为数据集制定了质量度量,我们称之为$ρ$ -GAP,并得出了在考虑模型不确定性正在考虑的跟踪错误的最终界限。我们展示了$ρ$ -GAP如何应用于反馈线性化控制法,并为我们的方法提供数值插图。

When first principle models cannot be derived due to the complexity of the real system, data-driven methods allow us to build models from system observations. As these models are employed in learning-based control, the quality of the data plays a crucial role for the performance of the resulting control law. Nevertheless, there hardly exist measures for assessing training data sets, and the impact of the distribution of the data on the closed-loop system properties is largely unknown. This paper derives - based on Gaussian process models - an analytical relationship between the density of the training data and the control performance. We formulate a quality measure for the data set, which we refer to as $ρ$-gap, and derive the ultimate bound for the tracking error under consideration of the model uncertainty. We show how the $ρ$-gap can be applied to a feedback linearizing control law and provide numerical illustrations for our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源