论文标题
关于对称凸超曲面和符号能力的收缩期的备注
Remarks on the systoles of symmetric convex hypersurfaces and symplectic capacities
论文作者
论文摘要
在本说明中,我们研究了$ \ mathbb {r}^{2n} $在反震荡中不变的凸出曲面的收缩。我们使用Floer Theory中的互合式能力研究了高度曲面的收缩期和对称收缩期之间的比率的均匀上限。我们讨论了可以明确理解比率的各种具体示例。
In this note we study the systoles of convex hypersurfaces in $\mathbb{R}^{2n}$ invariant under an anti-symplectic involution. We investigate a uniform upper bound of the ratio between the systole and the symmetric systole of the hypersurfaces using symplectic capacities from Floer theory. We discuss various concrete examples in which the ratio can be understood explicitly.