论文标题

网格:网格变形的可靠且可扩展的框架

MeshODE: A Robust and Scalable Framework for Mesh Deformation

论文作者

Huang, Jingwei, Jiang, Chiyu Max, Leng, Baiqiang, Wang, Bin, Guibas, Leonidas

论文摘要

我们提出了网格,这是一个可扩展且可靠的框架,用于没有预先指定的对应关系的成对CAD模型变形。给定一对形状,我们的框架提供了一种新颖的形状保留特征映射函数,该函数通过根据非rigid迭代效果 - 省点(ICP)算法最小化拟合和刚性损失,将一个模型连续变形为另一个模型。我们在此问题中解决了两个挑战,即设计强大的变形函数并获得功能保留的CAD变形。尽管传统变形直接针对网格顶点的坐标或控制笼的顶点进行了优化,但我们引入了一个深厚的boijective映射,该映射利用流动模型参数为神经网络。我们的功能具有处理复杂变形的能力,产生了保证无自我交流的变形,并且需要对几何形状保存的刚性限制较低,这与现有方法相比,它可以提高拟合质量。另外,它可以使两个任意形状之间的连续变形,而无需监督中间形状。此外,我们建议使用功能引人注目的细分和一个统一的图形模板表示对原始CAD网格的强大预处理管道,以解决原始CAD模型中的伪像,包括自我交流,不规则的三角形,拓扑上断开的组件,非曼尼法尔德边缘,非元素边缘,以及不合规的分布式植物。这有助于快速变形优化过程,可保留全球和本地细节。我们的代码公开可用。

We present MeshODE, a scalable and robust framework for pairwise CAD model deformation without prespecified correspondences. Given a pair of shapes, our framework provides a novel shape feature-preserving mapping function that continuously deforms one model to the other by minimizing fitting and rigidity losses based on the non-rigid iterative-closest-point (ICP) algorithm. We address two challenges in this problem, namely the design of a powerful deformation function and obtaining a feature-preserving CAD deformation. While traditional deformation directly optimizes for the coordinates of the mesh vertices or the vertices of a control cage, we introduce a deep bijective mapping that utilizes a flow model parameterized as a neural network. Our function has the capacity to handle complex deformations, produces deformations that are guaranteed free of self-intersections, and requires low rigidity constraining for geometry preservation, which leads to a better fitting quality compared with existing methods. It additionally enables continuous deformation between two arbitrary shapes without supervision for intermediate shapes. Furthermore, we propose a robust preprocessing pipeline for raw CAD meshes using feature-aware subdivision and a uniform graph template representation to address artifacts in raw CAD models including self-intersections, irregular triangles, topologically disconnected components, non-manifold edges, and nonuniformly distributed vertices. This facilitates a fast deformation optimization process that preserves global and local details. Our code is publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源