论文标题
高斯流程的全球优化
Global Optimization of Gaussian processes
论文作者
论文摘要
高斯过程〜(Kriging)是在各种学科中经常应用的数据驱动模型。通常,高斯过程在数据集上进行培训,随后将其嵌入为替代模型中,以在优化问题中。这些优化问题是非凸,并且需要全局优化。但是,以前的文献观察到计算负担将确定性的全局优化限制为在几个数据点上训练的高斯流程。我们建议使用嵌入的训练有素的高斯工艺来确定性全局优化的空间公式。为了优化,仅在自由度和麦考密克弛豫程度上的分支和结合的求解器分支通过显式高斯工艺模型传播。该方法还导致上限和上限的较小和计算更便宜的子问题。为了进一步加速融合,我们得出了贝叶斯优化中使用的GPS的共同协方差函数的包膜,以及贝叶斯优化中使用的收购功能的紧密放松,包括预期的改善,改善的概率和较低的置信度结合。与最先进的方法相比,我们总共减少了按数量级的计算时间,从而克服了以前的计算负担。我们证明了所提出方法的性能和缩放,并将其应用于贝叶斯优化,并通过全局优化采集功能和机会受限的编程。高斯流程模型,采集功能和培训脚本可在“瓜 - 优化的机器学习模型”中开放源,工具箱〜(https://git.rwth-aachen.de/avt.svt.svt/public/melon)。
Gaussian processes~(Kriging) are interpolating data-driven models that are frequently applied in various disciplines. Often, Gaussian processes are trained on datasets and are subsequently embedded as surrogate models in optimization problems. These optimization problems are nonconvex and global optimization is desired. However, previous literature observed computational burdens limiting deterministic global optimization to Gaussian processes trained on few data points. We propose a reduced-space formulation for deterministic global optimization with trained Gaussian processes embedded. For optimization, the branch-and-bound solver branches only on the degrees of freedom and McCormick relaxations are propagated through explicit Gaussian process models. The approach also leads to significantly smaller and computationally cheaper subproblems for lower and upper bounding. To further accelerate convergence, we derive envelopes of common covariance functions for GPs and tight relaxations of acquisition functions used in Bayesian optimization including expected improvement, probability of improvement, and lower confidence bound. In total, we reduce computational time by orders of magnitude compared to state-of-the-art methods, thus overcoming previous computational burdens. We demonstrate the performance and scaling of the proposed method and apply it to Bayesian optimization with global optimization of the acquisition function and chance-constrained programming. The Gaussian process models, acquisition functions, and training scripts are available open-source within the "MeLOn - Machine Learning Models for Optimization" toolbox~(https://git.rwth-aachen.de/avt.svt/public/MeLOn).