论文标题
在虚假信息网络中自动检测有影响力的参与者
Automatic Detection of Influential Actors in Disinformation Networks
论文作者
论文摘要
数字通信和社交媒体的武器化以巨大的规模,速度和达到武器进行了虚假信息运动提出了新的挑战,以识别和反对敌对影响力运营(IOS)。本文提出了一个端到端的框架,以自动化对虚假信息,网络和有影响力的参与者的检测。该框架集成了自然语言处理,机器学习,图形分析以及一种新型的网络因果推理方法,以量化个别参与者在传播IO叙事方面的影响。我们证明了它在2017年法国总统选举期间收集的Twitter数据集的现实世界敌对IO运动的能力,Twitter在广泛的IO活动中披露了IO帐户(2007年5月至2020年5月),超过50,000个帐户,17个帐户,17个国家以及包括巨魔和BOTS在内的不同帐户类型。我们的系统检测到IO的账户为96%的精度,79%的召回率和96%的PR-PR曲线区域,映射出显着的网络社区,并发现了基于活动数量和网络中心性的传统影响统计范围的高影响力帐户。从美国国会报告,调查性新闻和Twitter提供的IO数据集的独立来源来证实结果。
The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IOs). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language processing, machine learning, graph analytics, and a novel network causal inference approach to quantify the impact of individual actors in spreading IO narratives. We demonstrate its capability on real-world hostile IO campaigns with Twitter datasets collected during the 2017 French presidential elections, and known IO accounts disclosed by Twitter over a broad range of IO campaigns (May 2007 to February 2020), over 50,000 accounts, 17 countries, and different account types including both trolls and bots. Our system detects IO accounts with 96% precision, 79% recall, and 96% area-under-the-PR-curve, maps out salient network communities, and discovers high-impact accounts that escape the lens of traditional impact statistics based on activity counts and network centrality. Results are corroborated with independent sources of known IO accounts from U.S. Congressional reports, investigative journalism, and IO datasets provided by Twitter.