论文标题

Ising模型的单数支持

The singular support of the Ising model

论文作者

Andrews, George E., van Ekeren, Jethro, Heluani, Reimundo

论文摘要

我们证明了Ising模型顶点代数的特征的新的费米金准粒子总和表达式,与Rogers-ramanujan类型的Jackson-Slater $ Q $ Q $ series的身份以及与Matrix $ \ left的NAHM和NAHM总和有关(\ smallmatrix} 8&3&3;作为后果,我们发现了Ising模型的明确基础,以及对其单一支持的描述。我们发现,后者的理想捆扎将其定义为其相关方案的弧形空间的子处理,是有限地生成的,它是一种差异理想。我们证明了与中央电费的Virasoro Lie lie代数相关的Rogers-Ramanujan-Slater类型的三个新的$ Q $ Series标识。我们对与真空模块相关的身份进行组合解释。

We prove a new Fermionic quasiparticle sum expression for the character of the Ising model vertex algebra, related to the Jackson-Slater $q$-series identity of Rogers-Ramanujan type and to Nahm sums for the matrix $\left( \begin{smallmatrix} 8 & 3 \\ 3 & 2 \end{smallmatrix} \right)$. We find, as consequences, an explicit monomial basis for the Ising model, and a description of its singular support. We find that the ideal sheaf of the latter, defining it as a subscheme of the arc space of its associated scheme, is finitely generated as a differential ideal. We prove three new $q$-series identities of the Rogers-Ramanujan-Slater type associated with the three irreducible modules of the Virasoro Lie algebra of central charge $1/2$. We give a combinatorial interpretation to the identity associated with the vacuum module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源