论文标题

社会影响模型中的异构敏感性

Heterogeneous Susceptibilities in Social Influence Models

论文作者

Sewell, Daniel K.

论文摘要

网络自相关模型被广泛用于评估社会影响对某些感兴趣变量的影响。这是一大批模型,可以通过将网络邻接矩阵纳入数据的联合分布来解释邻居如何影响自己的行为或意见。但是,这些模型假定对社会影响的同质敏感性,这在许多情况下可能是一个有力的假设。本文提出了一个层次模型,该模型允许影响参数是单个属性和/或本地网络拓扑特征的函数。我们在通用框架中得出后验分布的近似值,该框架适用于Durbin,网络效果,网络干扰或网络移动平均自相关模型。在以自我为中心网络数据的背景下,提出的方法也可以应用于调查社会影响的决定因素。我们将方法应用于通过手机收集的数据集,在该数据集中我们确定了社会影响对体育活动水平的影响,以及我们研究同伴对学生抗拒的影响的课堂数据。在最后一个数据集中,我们还研究了提出的中心网络模型的性能。

Network autocorrelation models are widely used to evaluate the impact of social influence on some variable of interest. This is a large class of models that parsimoniously accounts for how one's neighbors influence one's own behaviors or opinions by incorporating the network adjacency matrix into the joint distribution of the data. These models assume homogeneous susceptibility to social influence, however, which may be a strong assumption in many contexts. This paper proposes a hierarchical model that allows the influence parameter to be a function of individual attributes and/or of local network topological features. We derive an approximation of the posterior distribution in a general framework that is applicable to the Durbin, network effects, network disturbances, or network moving average autocorrelation models. The proposed approach can also be applied to investigating determinants of social influence in the context of egocentric network data. We apply our method to a data set collected via mobile phones in which we determine the effect of social influence on physical activity levels, as well as classroom data in which we investigate peer influence on student defiance. With this last data set, we also investigate the performance of the proposed egocentric network model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源