论文标题

某些单一理想的力量发电机数量下降

Certain monomial ideals whose numbers of generators of powers descend

论文作者

Abdolmaleki, Reza, Kumashiro, Shinya

论文摘要

本文研究了多项式环中单一理想能力的最小发电机的数量。对于单个变量中的单体理想$ i $,Eliahou,Herzog和Saem给出了较小的下限$μ(i^2)\ ge 9 $,用于$ i^2 $的最小发电机的数量,$ i^2 $,$μ(i)\ geq 6 $。最近,Gasanova构建了单一理想,因此对于任何正整数$ n $,$μ(i)>μ(i^n)$。参考它们,我们构建了一类单一理想,以便为任何正整数$ n $ $μ(i)>μ(i^2)> \ cdots>μ(i^n)=(n+1)^2 $,它提供了功能$μ(i^k)$的最出乎意料的行为之一。单一理想还提供了一个奇特的例子,使得$ r/i^n $ discends的Cohen-Macaulay类型(或不可约性索引)。

This paper studies the numbers of minimal generators of powers of monomial ideals in polynomial rings. For a monomial ideal $I$ in two variables, Eliahou, Herzog, and Saem gave a sharp lower bound $μ(I^2)\ge 9$ for the number of minimal generators of $I^2$ with $μ(I)\geq 6$. Recently, Gasanova constructed monomial ideals such that $μ(I)>μ(I^n)$ for any positive integer $n$. In reference to them, we construct a certain class of monomial ideals such that $μ(I)>μ(I^2)>\cdots >μ(I^n)=(n+1)^2$ for any positive integer $n$, which provides one of the most unexpected behaviors of the function $μ(I^k)$. The monomial ideals also give a peculiar example such that the Cohen-Macaulay type (or the index of irreducibility) of $R/I^n$ descends.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源