论文标题

延迟时间和非绝热校准。在强场相互作用中的多光子过程与隧道

Delay time and Non-Adiabatic Calibration of the Attoclock. Multiphoton process versus tunneling in strong field interaction

论文作者

Kullie, Ossama, Ivanov, Igor

论文摘要

称为Attoclock的Attosens实验中的隧道时间的测量引发了有关隧道时间的热门争论,时间在量子力学中的作用,其中与激光脉冲的相互作用涉及另一个特征的两个方案,多光子和隧道(field-)电离。在绝热场校准中,我们中的一个(O. K.)在较早的工作中开发了一个真正的隧道时间模型,并表明该模型非常适合Landsmann等人的实验数据。 (optica {\ bf 1},343 2014)。在目前的工作中,结果表明该模型解释了非绝热场校准的实验结果,其中人们与Hofmann等人的实验数据达成了良好的一致性。 (J. ofmod。opt。{\ bf 66},1052,2019)。此外,我们通过时间依赖性schrödinger方程的数值整合确认结果。该模型之所以吸引人,是因为它提供了多人和隧道田间离子化制度的清晰图片。在非绝热情况(非绝热场校准)中,电离主要由多光子吸收驱动。令人惊讶的是,在场强的情况下,$ f \ le f_a $($ f_a $是原子场强度)该模型始终预测相对于量子限制$τ_a$在$ f = f_a $方面的时间延迟。对于绝热的隧道,以极限($ f = f_a $)的饱和度解释了著名的Hartman效果或Hartman Paradox。

The measurement of the tunneling time in attosecond experiments, termed attoclock, triggered a hot debate about the tunneling time, the role of time in quantum mechanics, where the interaction with the laser pulse involves two regimes of a different character, the multiphoton and the tunneling (field-) ionization. In the adiabatic field calibration, one of us (O. K.) developed in earlier works a real tunneling time model and showed that the model fits well to the experimental data of Landsmann et al. (Optica {\bf 1}, 343 2014). In the present work, it is shown that the model explains the experimental result in the nonadiabatic field calibration, where one reaches a good agreement with the experimental data of Hofmann et al. (J. of Mod. Opt. {\bf 66}, 1052, 2019). Furthermore, we confirm the result with the numerical integration of the time-dependent Schrödinger equation. The model is appealing because it offers a clear picture of the multiphoton and tunneling field-ionization regimes. In the nonadiabatic case (the nonadiabatic field calibration), the ionization is mainly driven by multiphoton absorption. Surprisingly, at a field strength $F \le F_a$ ($F_a$ is the atomic field strength) the model always predicts a time delay with respect to the quantum limit $τ_a$ at $F=F_a$. For an adiabatic tunneling the saturation at the limit ($F=F_a$) explains the well-known Hartman effect or Hartman paradox.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源