论文标题
在某些完全虚构的四分之一字段的单位的$ 2 $ - 亚法对数上
On the $2$-adic logarithm of units of certain totally imaginary quartic fields
论文作者
论文摘要
在本文中,我们证明了$ 2 $ -ADIC的对数的结果,该场的基本单位$ \ Mathbb {q}(\ sqrt [4] { - q})$,其中$ q \ equiv 3 \ equiv 3 \ bmod 4 $是PRIME。当$ q \ equiv 15 \ bmod 16 $时,此结果证实了Coates-Li的猜测,并对其工作中产生的某些iWasawa模块产生了影响。
In this paper, we prove a result on the $2$-adic logarithm of the fundamental unit of the field $\mathbb{Q}(\sqrt[4]{-q}) $, where $q\equiv 3\bmod 4$ is a prime. When $q\equiv 15\bmod 16$, this result confirms a speculation of Coates-Li and has consequences for certain Iwasawa modules arising in their work.