论文标题

固定连续状态分支过程的某些特性

Some properties of stationary continuous state branching processes

论文作者

Abraham, Romain, Delmas, Jean-François, He, Hui

论文摘要

我们考虑了随着移民的静止连续分支过程的家谱树。对于亚临界稳定的分支机制,我们在某个固定时间考虑了现有种群的家谱树,并证明,直到确定性的时间变化,它被分布成连续的时代Galton-Watson工艺,随着移民的移民。当仅查看到达某些固定时间间隔的移民时,我们获得了关键的稳定分支机制的相似结果。对于一种一般的亚临界分支机制,我们考虑了给出现存人群中后代的个体的数量。相关的过程(时间向前或向后)是纯粹的死亡或纯马尔可夫过程,为此我们计算过渡速率。

We consider the genealogical tree of a stationary continuous state branching process with immigration. For a sub-critical stable branching mechanism, we consider the genealogical tree of the extant population at some fixed time and prove that, up to a deterministic time-change, it is distributed as a continuous-time Galton-Watson process with immigration. We obtain similar results for a critical stable branching mechanism when only looking at immigrants arriving in some fixed time-interval. For a general sub-critical branching mechanism, we consider the number of individuals that give descendants in the extant population. The associated processes (forward or backward in time) are pure-death or pure-birth Markov processes, for which we compute the transition rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源