论文标题
添加六元的溶解度在$ \ mathbb {q} _2(\ sqrt {-1})$和$ \ mathbb {q} _2(\ sqrt {-5})$上
Solubility of Additive Sextic Forms over $\mathbb{Q}_2(\sqrt{-1})$ and $\mathbb{Q}_2(\sqrt{-5})$
论文作者
论文摘要
迈克尔·纳普(Michael Knapp)在先前的工作中指出,每种添加六句话形式都超过$ \ mathbb {q} _2(\ sqrt {-1})$和$ \ mathbb {q} _2(\ sqrt {-5})$在七个variables中的$ in 7 variables中有一个非试点的零。在本文中,我们证明了这个猜想是正确的,确定$γ^*(6,\ mathbb {q} _2(\ sqrt {-1}))=γ^**(6,\ mathbb {q} _2 _2 _2 _2(\ sqrt {-5})= 7 $。
Michael Knapp, in a previous work, conjectured that every additive sextic form over $\mathbb{Q}_2(\sqrt{-1})$ and $\mathbb{Q}_2(\sqrt{-5})$ in seven variables has a nontrivial zero. In this paper, we show that this conjecture is true, establishing that $Γ^*(6, \mathbb{Q}_2(\sqrt{-1})) = Γ^*(6, \mathbb{Q}_2(\sqrt{-5})) = 7 $.