论文标题
可扩展的二氧化氮氮的可扩展时空回归
Scalable penalized spatiotemporal land-use regression for ground-level nitrogen dioxide
论文作者
论文摘要
二氧化氮(NO $ _2 $)是与交通相关的空气污染的主要组成部分,并且具有良好的有害环境和人为影响。 NO $ _2 $的时空分布的知识对于暴露和风险评估至关重要。评估空气污染暴露的一种常见方法是涉及空间引用的协变量的线性回归,称为土地利用回归(LUR)。我们通过将通用的Vecchia Gaussian工艺近似值与对LUR系数的惩罚相结合,开发了一种具有时空相关误差的LUR模型的可变方法和估算LUR模型的估计。与使用模拟数据的现有方法相比,对于广泛的相关设置,我们的方法在校准和清晰度方面提高了更高的模型选择特异性和敏感性,并且在校准和清晰度方面得到了更好的预测。在我们对每日,范围内,地面NO $ _2 $数据的时空分析中,我们的方法更准确,并产生了更稀疏,更容易解释的模型。我们的日常预测阐明了美国无$ _2 $浓度的时空模式,包括城市和城市内变化之间的显着差异。因此,我们的预测对于寻求日常国家规模预测的流行病学和风险评估研究将很有用,并且可以用于急性结果健康风险评估。
Nitrogen dioxide (NO$_2$) is a primary constituent of traffic-related air pollution and has well established harmful environmental and human-health impacts. Knowledge of the spatiotemporal distribution of NO$_2$ is critical for exposure and risk assessment. A common approach for assessing air pollution exposure is linear regression involving spatially referenced covariates, known as land-use regression (LUR). We develop a scalable approach for simultaneous variable selection and estimation of LUR models with spatiotemporally correlated errors, by combining a general-Vecchia Gaussian process approximation with a penalty on the LUR coefficients. In comparisons to existing methods using simulated data, our approach resulted in higher model-selection specificity and sensitivity and in better prediction in terms of calibration and sharpness, for a wide range of relevant settings. In our spatiotemporal analysis of daily, US-wide, ground-level NO$_2$ data, our approach was more accurate, and produced a sparser and more interpretable model. Our daily predictions elucidate spatiotemporal patterns of NO$_2$ concentrations across the United States, including significant variations between cities and intra-urban variation. Thus, our predictions will be useful for epidemiological and risk-assessment studies seeking daily, national-scale predictions, and they can be used in acute-outcome health-risk assessments.