论文标题

深度学习改善了射频干扰的识别

Deep Learning improves identification of Radio Frequency Interference

论文作者

Sadr, Alireza Vafaei, Bassett, Bruce A., Oozeer, Nadeem, Fantaye, Yabebal, Finlay, Chris

论文摘要

射频干扰(RFI)的标记是射电天文学中越来越重要的挑战。我们提出了R-NET,这是一种深度卷积的重新连接体系结构,在包括AUC,F1-SCORE和MCC在内的所有指标上都大大优于现有算法(包括默认的Meerkat RFI Flagger和Deep U-Net Architectures)。我们证明了这种改进在单盘和干涉量模拟上的鲁棒性,并使用转移学习在实际数据上进行了鲁棒性。我们的R-Net型号的精度约为$ 90 \%$ $,比当前的Meerkat Flagger $ 80 \%$召回,并且F1分数高35 \%,没有额外的性能成本。我们进一步强调了从最初对模拟的Meerkat数据训练的模型转移学习的有效性,并对真实的,人体标记的KAT-7数据进行了微调。尽管两个望远镜阵列的性质存在很大差异,但该模型的AUC为0.91,而没有传输学习的最佳模型仅达到0.67的AUC。我们考虑在模型中使用相位信息,但发现如果没有校准,则相位几乎没有添加有关振幅数据的额外信息。我们的结果强烈表明,对模拟的深入学习,通过对真实数据的转移学习来提高,可能会在RFI标记射电天文学数据的未来中发挥关键作用。

Flagging of Radio Frequency Interference (RFI) is an increasingly important challenge in radio astronomy. We present R-Net, a deep convolutional ResNet architecture that significantly outperforms existing algorithms -- including the default MeerKAT RFI flagger, and deep U-Net architectures -- across all metrics including AUC, F1-score and MCC. We demonstrate the robustness of this improvement on both single dish and interferometric simulations and, using transfer learning, on real data. Our R-Net model's precision is approximately $90\%$ better than the current MeerKAT flagger at $80\%$ recall and has a 35\% higher F1-score with no additional performance cost. We further highlight the effectiveness of transfer learning from a model initially trained on simulated MeerKAT data and fine-tuned on real, human-flagged, KAT-7 data. Despite the wide differences in the nature of the two telescope arrays, the model achieves an AUC of 0.91, while the best model without transfer learning only reaches an AUC of 0.67. We consider the use of phase information in our models but find that without calibration the phase adds almost no extra information relative to amplitude data only. Our results strongly suggest that deep learning on simulations, boosted by transfer learning on real data, will likely play a key role in the future of RFI flagging of radio astronomy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源