论文标题
不规则时间序列的神经控制的微分方程
Neural Controlled Differential Equations for Irregular Time Series
论文作者
论文摘要
神经普通微分方程是建模时间动力学的有吸引力的选择。但是,一个基本问题是,对普通微分方程的解决方案是由其初始条件决定的,并且没有基于后续观察结果调整轨迹的机制。在这里,我们演示了如何通过\ emph {受控微分方程}的数学理解的数学来解决。所得的\ emph {神经控制的微分方程}模型直接适用于部分观察到的不规则采样的多元时间序列的一般设置,并且(在此问题上与以前的工作不同),即使在整个观测值之间,它也可能利用内存有效的基于内存的基于内存的邻接反射。我们证明,在一系列数据集的经验研究中,我们的模型针对类似(基于ODE或RNN的)模型实现了最先进的性能。最后,我们提供了证明通用近似的理论结果,并且我们的模型集成了替代ODE模型。
Neural ordinary differential equations are an attractive option for modelling temporal dynamics. However, a fundamental issue is that the solution to an ordinary differential equation is determined by its initial condition, and there is no mechanism for adjusting the trajectory based on subsequent observations. Here, we demonstrate how this may be resolved through the well-understood mathematics of \emph{controlled differential equations}. The resulting \emph{neural controlled differential equation} model is directly applicable to the general setting of partially-observed irregularly-sampled multivariate time series, and (unlike previous work on this problem) it may utilise memory-efficient adjoint-based backpropagation even across observations. We demonstrate that our model achieves state-of-the-art performance against similar (ODE or RNN based) models in empirical studies on a range of datasets. Finally we provide theoretical results demonstrating universal approximation, and that our model subsumes alternative ODE models.