论文标题
宇宙学和引力波一致的$ d \至4 $ EINSTEIN-GAUSS-BONNET重力
Cosmology and gravitational waves in consistent $D\to 4$ Einstein-Gauss-Bonnet gravity
论文作者
论文摘要
在最近的一篇论文[1]中,我们提出了一种新颖的$ 4 $维度的重力理论,具有两个动态的自由度,这是始终实现$ d \ to4 $ to4 $ einstein-gauss-bonnet Gravity,并与重新固定的高斯 - 高斯 - 波纳内特偶数coupling Constant $ \tildeα$。通过破坏差异不变的一部分,这已经成为可能,因此与lovelock定理一致。在本文中,我们研究了理论在存在完美流体的情况下对宇宙学的含义,并阐明了从一致的$ 4 $维理论获得的结果与先前考虑的,天真(和不一致的)$ d \ rightarrow 4 $限制的结果之间的相似性和差异。在研究线性扰动时,我们明确表明该理论仅具有紧张的引力自由度(除了物质程度之外),并且对于$ \ \tildeα> 0 $和$ \ dot {h} <0 $,扰动可以自由地构建任何病理,以便我们实现早期和/迟到/迟到或迟到或迟到或迟到的时间范围的时间范围。有趣的是,$ k^4 $项出现在张量模式的分散关系中,该模式在小尺度上起着重要作用,这使得该理论不仅与一般相对论,而且许多其他修改的重力理论以及天真(和不一致的)$ d \ d \ to 4 $限制。考虑到$ k^4 $项,对重力波传播的观察性约束产生了绑定的$ \tildeα\ lyseSim(10 \,{\ rm mev})^{ - 2} $。这是唯一的参数(除了牛顿的常数和选择源于时间表固定的约束之外)的第一个结合)在$ d \至4 $ einstein-einstein-gauss-bonnet重力的一致理论中。
In a very recent paper [1], we have proposed a novel $4$-dimensional gravitational theory with two dynamical degrees of freedom, which serves as a consistent realization of $D\to4$ Einstein-Gauss-Bonnet gravity with the rescaled Gauss-Bonnet coupling constant $\tildeα$. This has been made possible by breaking a part of diffeomorphism invariance, and thus is consistent with the Lovelock theorem. In the present paper, we study cosmological implications of the theory in the presence of a perfect fluid and clarify the similarities and differences between the results obtained from the consistent $4$-dimensional theory and those from the previously considered, naive (and inconsistent) $D\rightarrow 4$ limit. Studying the linear perturbations, we explicitly show that the theory only has tensorial gravitational degrees of freedom (besides the matter degree) and that for $\tildeα>0$ and $\dot{H}<0$, perturbations are free of any pathologies so that we can implement the setup to construct early and/or late time cosmological models. Interestingly, a $k^4$ term appears in the dispersion relation of tensor modes which plays significant roles at small scales and makes the theory different than not only general relativity but also many other modified gravity theories as well as the naive (and inconsistent) $D\to 4$ limit. Taking into account the $k^4$ term, the observational constraint on the propagation of gravitational waves yields the bound $\tildeα \lesssim (10\,{\rm meV})^{-2}$. This is the first bound on the only parameter (besides the Newton's constant and the choice of a constraint that stems from a temporal gauge fixing) in the consistent theory of $D\to 4$ Einstein-Gauss-Bonnet gravity.