论文标题
嘈杂特征向量的高维正态性
High dimensional normality of noisy eigenvectors
论文作者
论文摘要
我们研究了在噪声较弱的情况下,大型对称矩阵的联合特征向量分布。我们的主要结果表明,特征向量正交基质中的每个子序列都会收敛到多维高斯分布。证明涉及分析随机本本态方程(请参阅),该方程描述了由基质价值的布朗尼运动诱导的特征向量的谎言组值。我们考虑相关的彩色特征向量矩流,该流动在粒子配置空间上定义了SDE。该流程将Bourgade和Yau(2017)首次引入的特征向量矩流扩展到多色设置。但是,由于半群核缺乏积极性,因此不再受到配置空间的基本马尔可夫过程的驱动。然而,我们证明了动态承认足够的平均衰减和收缩性能。这使我们能够为彩色特征向量矩流的平衡建立最佳的放松时间,并证明特征向量的关节渐变性。随机矩阵理论中的应用包括对通用Wigner型矩阵的关节特征向量分布的明确计算,当相应的特征值位于频谱的大部分中时,稀疏的图形模型以及当特征向量向对应于小能量时的Lévy矩阵的关节特征向量分布。
We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the stochastic eigenstate equation (SEE) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated colored eigenvector moment flow defining an SDE on a particle configuration space. This flow extends the eigenvector moment flow first introduced in Bourgade and Yau (2017) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Lévy matrices when the eigenvectors correspond to small energy levels.