论文标题
通过基于数据的分配鲁棒性,用于水分配网络的最佳泵控制
Optimal Pump Control for Water Distribution Networks via Data-based Distributional Robustness
论文作者
论文摘要
在本文中,我们提出了一种基于数据的方法来解决水分配网络(WDN)多周期随机最佳水流(OWF)问题。该框架明确考虑了泵的时间表和水网络头级,并且在长时间的模拟中,需求预测错误的信息有限。目的是确定网络连接组件的最佳反馈决策,例如名义泵计划和储罐头部水平以及储备策略,该策略指定了对预测错误的设备反应,以适应波动的水需求。我们认为,我们考虑以某些分布的规定产生的水网络中的不确定性,而是考虑以经验分布为中心的分布集,该分布直接基于有限的培训数据集。我们使用与Wasserstein度量的基于距离的歧义集来量化实际未知数据生成分布与经验分布之间的距离。这使我们的多个周期OWF框架可以在培训数据集中进行系统性能和固有的采样错误。关于三坦克水分配网络的案例研究系统地说明了泵的运营成本,约束违规的风险和样本外的性能之间的权衡。
In this paper, we propose a data-based methodology to solve a multi-period stochastic optimal water flow (OWF) problem for water distribution networks (WDNs). The framework explicitly considers the pump schedule and water network head level with limited information of demand forecast errors for an extended period simulation. The objective is to determine the optimal feedback decisions of network-connected components, such as nominal pump schedules and tank head levels and reserve policies, which specify device reactions to forecast errors for accommodation of fluctuating water demand. Instead of assuming the uncertainties across the water network are generated by a prescribed certain distribution, we consider ambiguity sets of distributions centered at an empirical distribution, which is based directly on a finite training data set. We use a distance-based ambiguity set with the Wasserstein metric to quantify the distance between the real unknown data-generating distribution and the empirical distribution. This allows our multi-period OWF framework to trade off system performance and inherent sampling errors in the training dataset. Case studies on a three-tank water distribution network systematically illustrate the tradeoff between pump operational cost, risks of constraint violation, and out-of-sample performance.