论文标题

在Hele-Shaw细胞中缩小界面的非线性限制动力学

Nonlinear limiting dynamics of a shrinking interface in a Hele-Shaw cell

论文作者

Zhao, Meng, Niroobakhsh, Zahra, Lowengrub, John, Li, Shuwang

论文摘要

带有耗时差距的Hele-shaw单元中的流动引起了独特的收缩界面问题。当细胞的上板以规定的速度垂直提升时,外部粘性流体较少会穿透内部更具粘性的液体,从而通过萨夫曼 - 泰勒不稳定产生复杂的,时间依赖的界面图案。图案形成过程敏感取决于提升速度,但仍未完全理解。对于某些提升速度,例如线性或指数速度,不稳定性是瞬态的,界面最终会缩小为圆。但是,线性稳定性分析表明,如果间隙$ b(t)$更快增加,则存在形状不变的模式:$ \ displayStyle b(t)= \ left(1- \ frac {7} {2} {2}° $ \ MATHCAL {C} $是接口扰动模式$ K $的函数。在这里,我们将频谱准确的边界积分方法与有效的时间自适应恢复方案一起使用,这首先使探索消失界面的非线性限制动力学行为成为可能。当差距以恒定速率增加时,我们的数值结果与实验观察结果一致(Nase等,Phys。Fluids,第23卷,2011年,第123101页)。当我们使用形状不变的差距$ b(t)$时,我们的非线性结果表明,存在$ k $ - 折叠式的占主导地位,一维,类似网络的网络,在该网络中,分形维度在后期降低至几乎一个。我们通过构建用于模式选择的形态图来结束,该图形选择将消失界面的主导模式$ k $与控制参数$ \ Mathcal {C} $相关联。

The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous fluid, which generates complex, time-dependent interfacial patterns through the Saffman-Taylor instability. The pattern formation process sensitively depends on the lifting speed and is still not fully understood. For some lifting speeds, such as linear or exponential speed, the instability is transient and the interface eventually shrinks as a circle. However, linear stability analysis suggests there exist shape invariant shrinking patterns if the gap $b(t)$ is increased more rapidly: $\displaystyle b(t)=\left(1-\frac{7}{2}τ\mathcal{C} t\right)^{-{2}/{7}}$, where $τ$ is the surface tension and $\mathcal{C}$ is a function of the interface perturbation mode $k$. Here, we use a spectrally accurate boundary integral method together with an efficient time adaptive rescaling scheme, which for the first time makes it possible to explore the nonlinear limiting dynamical behavior of a vanishing interface. When the gap is increased at a constant rate, our numerical results quantitatively agree with experimental observations (Nase et al., Phys. Fluids, vol. 23, 2011, pp. 123101). When we use the shape invariant gap $b(t)$, our nonlinear results reveal the existence of $k$-fold dominant, one-dimensional, web-like networks, where the fractal dimension is reduced to almost one at late times. We conclude by constructing a morphology diagram for pattern selection that relates the dominant mode $k$ of the vanishing interface and the control parameter $\mathcal{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源