论文标题

在2020年Semeval-2020任务11:在Roberta-Crf,Span Cls上以及自我训练是否对他们有帮助

ApplicaAI at SemEval-2020 Task 11: On RoBERTa-CRF, Span CLS and Whether Self-Training Helps Them

论文作者

Jurkiewicz, Dawid, Borchmann, Łukasz, Kosmala, Izabela, Graliński, Filip

论文摘要

本文介绍了宣传技术分类(TC)任务的获胜系统和宣传跨度识别(SI)任务的第二位系统。 TC任务的目的是确定给定宣传文本片段的应用宣传技术。 SI任务的目的是找到至少包含一种宣传技术的特定文本片段。两种开发的解决方案都使用了半监督的自我训练学习技术。有趣的是,尽管CRF几乎不与基于变压器的语言模型一起使用,但SI任务是通过Roberta-CRF架构来完成的。提出了用于TC任务的基于罗伯塔的合奏,其中一个利用我们在本文中引入的跨度CLS层。除了描述提交的系统外,还研究了建筑决策和培训方案的影响,以及有关质量相同或更好的计算预算的培训模型的评论。最后,提出了误差分析的结果。

This paper presents the winning system for the propaganda Technique Classification (TC) task and the second-placed system for the propaganda Span Identification (SI) task. The purpose of TC task was to identify an applied propaganda technique given propaganda text fragment. The goal of SI task was to find specific text fragments which contain at least one propaganda technique. Both of the developed solutions used semi-supervised learning technique of self-training. Interestingly, although CRF is barely used with transformer-based language models, the SI task was approached with RoBERTa-CRF architecture. An ensemble of RoBERTa-based models was proposed for the TC task, with one of them making use of Span CLS layers we introduce in the present paper. In addition to describing the submitted systems, an impact of architectural decisions and training schemes is investigated along with remarks regarding training models of the same or better quality with lower computational budget. Finally, the results of error analysis are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源