论文标题

用多元累积物的拓扑推断:Möbius推断算法

Topology Inference with Multivariate Cumulants: The Möbius Inference Algorithm

论文作者

Smith, Kevin D., Jafarpour, Saber, Swami, Ananthram, Bullo, Francesco

论文摘要

有关通信网络的监视,管理和设计的许多任务都取决于路由拓扑的知识。但是,拓扑映射的标准方法(即用示踪剂进行主动探测)与越来越非合件的路由器合作的合作,导致信息丢失。网络断层扫描是一种可能的补救措施,该网络断层扫描使用添加剂链接指标的端到端测量值(例如延迟或日志丢失率)。网络断层扫描不需要路由器与Traceroute探针配合,并且已经用于推断多播树的结构。本文更进一步。我们提供了一种层析成像方法,可以使用端到端测量的联合分布来推断一组任意监视路径的基本路由拓扑,而无需对路由行为做出任何假设。我们的方法称为Möbius推理算法(MIA),使用此分布的累积物来量化监视器路径之间的高阶相互作用,并且将Möbius倒置应用于“解散”这些相互作用。除了MIA外,我们还提供了一种更实用的变体,称为稀疏的Möbius推断,该变体使用各种稀疏启发式方法来减少所需估计的累积量的数量和顺序。我们使用基于现实世界ISP拓扑的合成案例研究显示了方法的生存能力。

Many tasks regarding the monitoring, management, and design of communication networks rely on knowledge of the routing topology. However, the standard approach to topology mapping--namely, active probing with traceroutes--relies on cooperation from increasingly non-cooperative routers, leading to missing information. Network tomography, which uses end-to-end measurements of additive link metrics (like delays or log packet loss rates) across monitor paths, is a possible remedy. Network tomography does not require that routers cooperate with traceroute probes, and it has already been used to infer the structure of multicast trees. This paper goes a step further. We provide a tomographic method to infer the underlying routing topology of an arbitrary set of monitor paths using the joint distribution of end-to-end measurements, without making any assumptions on routing behavior. Our approach, called the Möbius Inference Algorithm (MIA), uses cumulants of this distribution to quantify high-order interactions among monitor paths, and it applies Möbius inversion to "disentangle" these interactions. In addition to MIA, we provide a more practical variant called Sparse Möbius Inference, which uses various sparsity heuristics to reduce the number and order of cumulants required to be estimated. We show the viability of our approach using synthetic case studies based on real-world ISP topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源