论文标题
带有两个佳能点的奇异扰动平面系统中的双那天循环
Double canard cycles in singularly perturbed planar systems with two canard points
论文作者
论文摘要
我们考虑双牛肉循环,包括两个夏威夷式平面系统中的两个牛排。先前的工作研究了复杂的振荡,包括放松振荡和具有单参数层方程的奇异扰动平面系统中的牛排循环,这些方程与一个参数层方程式,这些方程精确地为一个侧点,两个跳跃点或一个牛排点和一个跳高点。基于正常形式的理论,爆破技术和梅尔尼科夫理论,我们研究了在两个非脱位罐头点的两个HOPF破坏机制引起的双牛肉循环。最后,我们将所获得的结果应用于具有二次阻尼的一类立方留子方程。
We consider double canard cycles including two canards in singularly perturbed planar systems with two canard points. Previous work studied the complex oscillations including relaxation oscillations and canard cycles in singularly perturbed planar systems with one-parameter layer equations, which have precisely one canard point, two jump points or one canard point and one jump point. Based on the normal form theory, blow-up technique and Melnikov theory, we investigate double canard cycles induced by two Hopf breaking mechanisms at two non-degenerate canard points. Finally, we apply the obtained results to a class of cubic Lienard equations with quadratic damping.