论文标题

与关系驱动的自我同步模型的半监督医学图像分类

Semi-supervised Medical Image Classification with Relation-driven Self-ensembling Model

论文作者

Liu, Quande, Yu, Lequan, Luo, Luyang, Dou, Qi, Heng, Pheng Ann

论文摘要

训练深度神经网络通常需要大量标记的数据才能获得良好的性能。但是,在医学图像分析中,获得数据的高质量标签是费力且昂贵的,因为准确注释的医学图像需要临床医生的专业知识。在本文中,我们提出了一个新颖的关系驱动的半监督框架,用于医学图像分类。这是一种基于一致性的方法,它通过鼓励在扰动下给定输入的预测一致性来利用未标记的数据,并利用一个自我浓度的模型来为未标记的数据产生高质量的一致性目标。考虑到人类诊断通常是指以前的类似情况以做出可靠的决定,我们引入了一种新型的样本关系一致性(SRC)范式,以通过对不同样本之间的关系信息进行建模,从而有效利用未标记的数据。我们的框架优于现有的基于一致性的方法,这些方法简单地实施了单个预测的一致性,我们的框架明确地实施了在扰动下不同样本之间语义关系的一致性,从而鼓励该模型从未标记的数据中探索额外的语义信息。我们已经进行了广泛的实验,以评估我们在两个公共基准医学图像分类数据集上的方法,即ISIC 2018挑战和胸部疾病分类的皮肤病变诊断和ChestX-Ray14。我们的方法的表现优于单标签和多标签图像分类方案的许多最先进的半监督学习方法。

Training deep neural networks usually requires a large amount of labeled data to obtain good performance. However, in medical image analysis, obtaining high-quality labels for the data is laborious and expensive, as accurately annotating medical images demands expertise knowledge of the clinicians. In this paper, we present a novel relation-driven semi-supervised framework for medical image classification. It is a consistency-based method which exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations, and leverages a self-ensembling model to produce high-quality consistency targets for the unlabeled data. Considering that human diagnosis often refers to previous analogous cases to make reliable decisions, we introduce a novel sample relation consistency (SRC) paradigm to effectively exploit unlabeled data by modeling the relationship information among different samples. Superior to existing consistency-based methods which simply enforce consistency of individual predictions, our framework explicitly enforces the consistency of semantic relation among different samples under perturbations, encouraging the model to explore extra semantic information from unlabeled data. We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets, i.e.,skin lesion diagnosis with ISIC 2018 challenge and thorax disease classification with ChestX-ray14. Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源