论文标题

关于量子不确定性的起源

On the Origin of Quantum Uncertainty

论文作者

Adami, Christoph

论文摘要

自从量子理论的启动以来,已经讨论了量子测量中固有的不确定性的起源,但是迄今为止,相对于量子状态的制剂,测量的不确定性的来源尚不清楚。在这里,我建议量子不确定性是数学逻辑中固有的不确定主义的体现。通过明确构建对彼此的程序空间写入的经典图灵机的成对,我表明确定了这对的关节状态,而单个机器的状态不是量子测量中的。特别是,单个机器的特征状态似乎是经典状态的叠加,尽管具有消失的特征值。因为这些“经典的”图灵机基本上实现了不可决定的“停止问题”,所以这种结构表明,在询问此类机器时,就其状态询问的不可避免的随机性恰恰是Chaitin停止概率固有的随机性。由于这种经典的构造反映了量子测量,所以我认为量子不确定性具有相同的起源。

The origin of the uncertainty inherent in quantum measurements has been discussed since quantum theory's inception, but to date the source of the indeterminacy of measurements performed at an angle with respect to a quantum state's preparation is unknown. Here I propose that quantum uncertainty is a manifestation of the indeterminism inherent in mathematical logic. By explicitly constructing pairs of classical Turing machines that write into each others' program space, I show that the joint state of such a pair is determined, while the state of the individual machine is not, precisely as in quantum measurement. In particular, the eigenstates of the individual machines appear to be superpositions of classical states, albeit with vanishing eigenvalue. Because these "classically entangled" Turing machines essentially implement undecidable "halting problems", this construction suggests that the inevitable randomness that results when interrogating such machines about their state is precisely the randomness inherent in the bits of Chaitin's halting probability. Because this classical construction mirrors quantum measurement, I argue that quantum uncertainty has the same origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源