论文标题
决定性多体系统的非平衡量子热力学:适用于Tonks-Girardeau和理想的费米气体
Nonequilibrium quantum thermodynamics of determinantal many-body systems: Application to the Tonks-Girardeau and ideal Fermi gases
论文作者
论文摘要
我们开发了一种一般方法,用于计算随时间变化的电位中量子多体系统的工作分布的特征功能,其多体波函数可以以Slater的决定因素形式施放。我们的结果适用于广泛的系统,包括一维中无旋转费的理想气体(1D),硬核玻色子的Tonks-Girardeau(TG)气体以及一维核心Anyons的1D气体。为了说明我们的方法的效用,我们专注于局限于任意时间依赖性捕获潜力的TG气体。特别是,我们使用多体波函数的决定符表示来表征TG气体的非平衡热力学,并获得精确且可计算的表达式 - 在弗雷德霍尔姆的决定因素方面 - 对于平均工作,工作概率分布函数,非糖尿病性函数,非糖尿病性参数,非脱糖性参数和loschmidt amplitud。当应用于和谐捕获的TG气体时,我们的平均工作和非绝热参数的结果将减少到先前使用替代方法衍生的结果。接下来,我们建议使用陷阱频率的周期性调制,以利用参数共振现象来将系统推向高度非平衡状态。在这种驾驶方案下,与先前考虑的突然淬灭协议相比,非绝热参数可能达到较大的值,这表明在系统上进行的大量不可逆工作。在超电原子实验中可以实现这种情况,这有助于对系统的所有热力学特性的基本理解。
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are applicable to a wide range of systems including an ideal gas of spinless fermions in one dimension (1D), the Tonks-Girardeau (TG) gas of hard-core bosons, as well as a 1D gas of hard-core anyons. In order to illustrate the utility of our approach, we focus on the TG gas confined to an arbitrary time-dependent trapping potential. In particular, we use the determinant representation of the many-body wave function to characterize the nonequilibrium thermodynamics of the TG gas and obtain exact and computationally tractable expressions---in terms of Fredholm determinants---for the mean work, the work probability distribution function, the nonadiabaticity parameter, and the Loschmidt amplitude. When applied to a harmonically trapped TG gas, our results for the mean work and the nonadiabaticity parameter reduce to those derived previously using an alternative approach. We next propose to use periodic modulation of the trap frequency in order to drive the system to highly non-equilibrium states by taking advantage of the phenomenon of parametric resonance. Under such driving protocol, the nonadiabaticity parameter may reach large values, which indicates a large amount of irreversible work being done on the system as compared to sudden quench protocols considered previously. This scenario is realizable in ultracold atom experiments, aiding fundamental understanding of all thermodynamic properties of the system.